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Despite an interparticle potential consisting of only an infinite repulsion at contact, the thermodynamics and
dynamics of concentrated dispersions of hard spheres are not yet fully understood. Colloidal poly-~methyl
methacrylate! spheres with a grafted layer of poly-~12-hydroxy stearic acid! ~PMMA-PHSA! comprise a
common model for investigating structural, dynamic, and rheological properties. These highly monodisperse
spheres can be index matched in nonaqueous solvents, reducing van der Waals forces and allowing character-
ization via light scattering. In this work, we test the behavior of these dispersions against expectations for hard
spheres through observations of the phase behavior, x-ray densitometry of equilibrium sediments, and Zimm
viscometry. We set the effective hard sphere volume fraction by the disorder-order transition, thereby account-
ing for the polymer layer, any swelling due to the solvent, and polydispersity. The melting transition then
occurs close to the expected value and the equation of state for the fluid phase, extracted from the equilibrium
sediment with x-ray densitometry, conforms to the Carnahan-Starling equation. However, the osmotic pressure
of the crystalline phase lies slightly above that calculated for a single fcc crystal even after accounting for
polydispersity. Likewise the high shear viscosity of the fluid compares well with other hard sphere dispersions,
but the low shear viscosity for PMMA-PHSA hard spheres exceeds those for polystyrene and silica hard
spheres, e.g., a relative viscosity of 4563 atf50.50 rather than 24. Our low shear viscosities are consistent
with other PMMA-PHSA data after rescaling for both the polymer layer thickness and polydispersity, and may
represent the true hard sphere curve. We anticipate that the equation of state for the crystal deviates due to
polycrystallinity or a direct effect of polydispersity.@S1063-651X~96!11612-3#

PACS number~s!: 82.70.Dd, 83.10.2y

I. INTRODUCTION

Concentrated colloidal dispersions, which form the back-
bone of many everyday materials such as paints, cosmetics,
soil, plastics, and ceramics, exhibit a first order phase transi-
tion from a disordered fluid to an ordered crystal as well as a
glass transition, and many other features analogous to atomic
and molecular fluids. Consequently, understanding and ma-
nipulating their properties is of practical and academic inter-
est @1–4#.

Hard spheres, one of the most fundamental systems, feel
no interparticle force except an infinite repulsion at contact,
and provide a convenient model for understanding the struc-
ture and dynamics of many concentrated colloidal disper-
sions. One realization of this model system consists of a
poly-~methyl methacrylate! ~PMMA! sphere with a grafted
layer of poly-~12-hydroxy stearic acid! ~PHSA! chains dis-
persed in a good solvent for PHSA such as decalin and te-
tralin. The solvent is chosen so as to index match the par-
ticles and reduce the long-range van der Waals attraction.
The branched PHSA chains provide a sufficiently thick layer
to render the remaining van der Waals potential insignificant

compared to the thermal energy. Thermodynamic and dy-
namic properties then depend on an effective volume frac-
tion f that accounts for the PHSA layer and, consequently,
exceeds the volume fractionfc based on the PMMA core.
Most recent studies with PMMA-PHSA dispersions convert
from core to effective volume fraction by identifying the
observed disorder-order transition with that predicted, i.e.,
settingf50.494 at freezing@3,5#. This represents a thermo-
dynamic definition of the effective volume fraction deter-
mined at the high concentrations of primary interest. Others
@6# follow the earlier practice established with polystyrene
and silica hard spheres of taking the inverse of the intrinsic
viscosity @h# as a measure of specific volume and setting
f5[h]fc/2.5, providing a hydrodynamic definition of the
hard sphere in the dilute limit. The procedure of Pusey and
van Megen has obvious advantages due to the difficulty of
measuring@h# accurately and the sensitivity of thermody-
namic and transport properties to small shifts inf at high
concentrations.

To characterize the force between the PMMA-PHSA
spheres, Cairnset al. @7# measured the excess osmotic pres-
sureP with spheres of diameter 2a5155 nm in dodecane at
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various fc with a custom built compression cell. For
fc,0.53, the osmotic pressure was barely detectable, and
could not be quantified because of experimental difficulties
at these very low pressures. The pressure then rises sharply
for fc.0.53 and essentially diverges atfc50.566, indicat-
ing close packing with a strong short-range repulsion~Fig.
1!. The second curve on Fig. 1 corresponds to the osmotic
pressure

P

nkT
5

2.89

12f/fmax
, ~1!

where kT is the thermal energy,n number density, and
fmax50.637, which Woodcock@8# extracted from his simu-
lations of metastable disordered hard spheres. Here we set
f50.637/0.566fc51.125fc to match the divergence in
Cairnset al.’s data. This scaling implies an effective layer
thickness ofL;3.3 nm, much less than the 6–20 nm de-
duced from other measures of the effective hard sphere vol-
ume fraction. Indeed, comparison of the data and theoretical
curve clearly suggests a longer-range softness in the poten-
tial, presumably due to compression or interpenetration of
the grafted layers. Of course, increasing the radius of the
particle core reduces the effect of the compressibility and
allows the particles to behave more like hard spheres.

As the volume fraction of hard spheres increases, the
equilibrium phase changes from a disordered fluid, to coex-
istence with a crystalline phase, then to fully crystalline, and
finally to a glass. The transition from fluid to crystal requires
both the thermodynamic driving force and Brownian motion,
which controls the rate. Under normal gravity, sedimentation
competes with the crystallization process and prevents the
realization of a homogeneous equilibrium state. The first ob-
servations by Pusey and van Megen@3# with 614-nm-
diameter spheres in decalin and carbon disulfide measured
the fraction of crystalline phase at various concentrations af-
ter two days, asserting that the crystals were fully nucleated
and grown but unaffected by gravity. Definingf from the
freezing transition yielded a melting transition atfm50.535,
compared with the expected value of 0.545@9#, andL;20
nm. Paulin and Ackerson@5#, on the other hand, constructed

the phase diagram by observing the sedimentation of 990-
nm-diameter spheres in decalin and tetralin at concentrations
in the coexistence region. Crystallites nucleated and grew
while settling along with particles in the fluid phase, causing
the boundary between pure fluid and the region containing
crystallites to first fall rapidly and then rise slowly and lin-
early with time. Extrapolation of this linear asymptote back
to zero time then determined the apparent fraction of the
crystalline phase, presumably before individual particles
settled but after the crystalline phase equilibrated with the
fluid. Paulin and Ackerson also set the hard sphere volume
fraction from the freezing transition and foundfm50.552
andL;6 nm. Though extraction of the crystal fraction may
be somewhat ambiguous in both cases, the results conform
reasonably well with expectations.

In detailed rheological measurements with the PMMA-
PHSA dispersions, Mewiset al. @6# investigated the effects
of ‘‘softness’’ with spheres of diameters ranging from 180 to
1220 nm. Measurements of the intrinsic viscosity yielded
L;961 nm, consistent with previously published data@10#.
For the smallest particles witha/L;5, the high and low
shear viscosities diverge at a higherf than for hard spheres;
whereas for the particles witha/L;30 and 61, the high and
low shear viscosities diverge at lowerf. The deviations from
the hard sphere response for the smaller particles clearly
arises from the deformability or compressibility of the poly-
mer layer. Increasing either the concentration or the shear
rate deforms the layer and reduces the effective volume frac-
tion to a degree that varies witha/L. Thus, as the ratio of
particle radius to layer thickness increases, the particles con-
form more closely to true hard spheres both thermodynami-
cally and hydrodynamically. More recent measurements@11#
demonstrate that fixingf from the freezing transition brings
the low shear viscosities closer to, but still somewhat above,
the data on other hard sphere systems. de Schepper, Cohen,
and Verberg@12# suggested considering the effect of poly-
dispersity,

d5
Aa22ā2

ā
, ~2!

since molecular dynamics simulations and density functional
theory indicate that the coexistence region narrows and the
freezing transition shifts to higher volume fractions
(f f.0.494) with increasing polydispersity. The critical
polydispersitydc at which the suspension no longer crystal-
lizes varies, with Moriguchi, Kawasaki, and Kawakatsu@13#
and Dickinson and Parker@14# finding dc;0.06–0.07 and
0.113, respectively, from molecular dynamics simulations,
while McRae and Haymet@15# and Barrat and Hansen@16#
predicteddc;0.05 and 0.06–0.07, respectively, with density
functional theory. Bolhuis and Kofke@17# performed Monte
Carlo simulations on near-Gaussian size distribution of hard
spheres, allowing for fractionation, and founddc50.057 for
the solid and 0.118 for the fluid. Pusey@18# developed a
simple theory based on Lindemann’s melting criterion, and
found thatdc;0.10. On the experimental side, Underwood,
Taylor, and van Megen@19# reported that PMMA-PHSA
spheres withd;0.10 showed a disorder-order transition
similar to that predicted for monodisperse hard spheres.

FIG. 1. Excess osmotic pressure measured with a compression
cell vsf for 155-nm-diameter PMMA-PHSA particles in dodecane
@7# compared with Woodcock’s simulation@8#.

6634 54SEE-ENG PHANet al.



Bartlett and Pusey@20# reported that PMMA-PHSA with
dc;0.075 crystallized slowly in the coexistence region, but
samples with concentrations above the melting transition did
not crystallize, while fordc.0.12 crystallization did not ap-
pear for several months.

Our suspensions have a polydispersity of 0.05 and clearly
crystallize. To account for polydispersity, we rescale our
core volume fractions according to Bolhuis and Kofke’s pre-
dictions thatf f50.505 atd50.05, i.e., so that the freezing
transition occurs at 0.505. Bolhuis and Kofke also predict
that the melting transition moves tofm50.555 atd50.05.

Our goal is to characterize fully the behavior of monodis-
perse PMMA-PHSA dispersions witha/L.25 by measuring
the phase transition, equation of state, and viscosity, and
comparing the results with the hard sphere model. In addi-
tion to conventional observations of coexisting phases, we
use x-ray densitometry and Zimm viscometry to determine
the osmotic pressure and the high and low shear limiting
viscosities, respectively.

II. SAMPLE DESCRIPTION

Professor R. H. Ottewill and his group at Bristol Univer-
sity synthesized the PMMA-PHSA particles and determined
average core diameters of 2a5518 and 640 nm via transmis-
sion electron microscopy~TEM!. We disperse the PMMA-
PHSA particles~bulk n51.503! in two different media. The
first consists of only 1,2,3,4-cis/trans-decahydronapthalene
~decalin,n51.4750!, which produces an opaque whitish dis-
persion. For the second, we nearly match the refractive index
of the swollen PMMA with that of the medium by mixing
cis/trans-decalin and 1,2,3,4-tetrahydronapthalene~tetralin,
n51.5410!, which bracket the particle refractive index. Te-
tralin is a good solvent for PMMA and swells the particles,
significantly increasing the size@21#. Matching then becomes
a dynamic process, so we hasten the equilibration by heating
the particles for two hours at 80 °C and adjusting the com-
position until the cooled suspension does not multiple scat-
ter, which occurs at 55-wt % tetralin withn51.511 at the
sodiumd line at 20 °C. Since the particles experience similar
temperatures during synthesis@7,22#, their structure and
physical properties should be unaffected aside from the
swelling. Index matching prevents multiple scattering, sup-
presses van der Waals forces, and results in a purplish trans-
parent suspension.

We determine the weight concentrations of our disper-
sions and then convert to effective volume fractions by con-
structing the phase diagram and measuring the densities and
refractive indices of the PMMA and solvent. The mass of
PMMA is determined by drying the suspension in a vacuum
oven at 60 °C over two weeks, with the assumption that dry-
ing removes the bulk solvent and the tetralin that swells the
particles. The weight fraction of PMMA follows as

w5
mPMMA

mPMMA1mt1ms
, ~3!

and, assuming that the PHSA layer contributes little to the
particle mass, the core volume fraction is

fc5
mPMMA /rPMMA1mt /r t1n free

D/M

mPMMA /rPMMA1mt /r t1ms /rs1n free
D/M , ~4!

wheremPMMA andrPMMA , mt andr t , andms andrs are the
mass and bulk density of PMMA, tetralin in the particle, and
the solvent, respectively, andnfree is the free volume within
the particles. The free volume may be different for PMMA in
the two solvents; therefore, a superscriptD orM denotes the
free volume of PMMA in decalin or in the index matching
mixture, respectively. The effective volume fraction then fol-
lows from multiplication by the volume of the core plus
polymer layer divided by that of the core alone. The conver-
sion is straightforward for the decalin samples, but must ac-
count for the swelling of particles in the index-matching
mixture.

With a Mettler-Paar DMA 45 digital density meter, we
determined the solvent densities forcis/trans-decalin, 0.8779
g/cm3 at 20 °C and 0.8749 g/cm3 at 25 °C, for tetralin,
0.9709 g/cm3 at 20 °C and 0.9678 g/cm3 at 25 °C, and for the
index matching mixture, 0.9282 g/cm3 at 20 °C and 0.9252
g/cm3 at 25 °C. A density gradient column, prepared with
NaBr and water so that the density varies linearly with
height, detects the bulk polymer density. The polymers are
heated overnight in a vacuum oven above the glass transition
temperature of PMMA~115 °C! to eliminate dissolved sol-
vent or air bubbles trapped inside the polymer. Two samples
of PMMA, from decalin and the mixture, yielded densities at
23 °C of 1.1912 and 1.1925 g/cm3, respectively, indicating
that no tetralin remains trapped in the polymer.

Since the density of the bulk PMMA differs from that of
the PMMA particles in the solvent, we also measured the
total density of the suspension at several volume fractions.
From this we could extract the density of the PMMA par-
ticles in the solvent. With free volume and/or swelling of the
particles by tetralin, the density of the dispersionr is

rs
r

511wH r t1 f ~rs2r t!

rPMMA
S11

rPMMAnfree
D/M

mPMMA
D 21J , ~5!

with the degree of swelling

f5
mPMMA /rPMMA1mt /r t1n free

D/M

mPMMA /rPMMA1nfree
D/M . ~6!

After some rearranging, the core volume fraction takes the
form

fc5
f

f1
rPMMA

rs~11rPMMAnfree
D/M/mPMMA!

S 1w21D2
r t
rs

~ f21!

,

~7!

and the particle density

rp5
rPMMA

f ~11rPMMAnfree
D/M/mPMMA!

1
~ f21!

f
r t . ~8!

For the dispersions in decalin,f51 andrp51.16660.005
g/cm3, indicating rPMMAnfree

D /mPMMA50.022460.002. The
density measurements in the index matching mixture do not
completely specify the particle density or core volume frac-
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tion, because the free volume is unknown. If the free volume
remains as in decalin,rp51.087 g/cm3 with f51.67, while,
if the free volume is zero,rp51.155 g/cm3 with f51.20.
The actual swollen particle density in the index matching
mixture probably lies in between the two limits.

Information on the refractive indices at the sodiumd line
at 20 °C ~Abbe refractometer model 2WAJ! complements
the density measurements to provide unambiguous estimates
of f andn free

M for the swollen particles in the index matching
mixture. Assuming mixing at constant density leads to the
refractive index of the swollen particle at the match point as

ns5
nPMMA

f
1
nt~ f21!

f

1
~12nPMMA!

f S rPMMAnfree
D/M/mPMMA

rPMMAnfree
D/M/mPMMA11D , ~9!

where the subscripts are as before. With the measured values
of the refractive indices of the individual components and the
index matching mixture cited above, we find thatf51.63 if
the free volume remains as in decalin, andf51.26 if the free
volume is zero. Requiring Eqs.~5! and ~9! to conform with
experimental values yields f51.2960.05 and
rPMMAnfree

M /mPMMA50.002. Thus, in the index matching
mixture samples, the tetralin appears to occupy most of the
free volume.

To estimate the layer thickness and confirm the degree of
swelling, we constructed the phase diagram by observing the
sedimentation of PMMA dispersions at various core volume
fractions@5# in glass vials sealed with a teflon lined cap and
teflon tape at room temperature~2161 °C!. Within a few
weeks the samples separate into three distinct layers with the
crystalline solid at the bottom, a clear supernatant on top,
and a fluid dispersion in between. As the fluid phase settled
and the crystalline layer grew, the height of each layer was
carefully measured with a cathetometer. The phase diagrams
for dispersions in both pure decalin and the index matching
mixture shown in Fig. 2 were constructed by extrapolating

the position of the crystalline-fluid interface to zero time. We
choose the scale factor between the swollen core and hard
sphere volume fractions such thatf50.505 at the core vol-
ume fraction where crystals begin to form. For the decalin
samples this translates intoL515.161.5 nm andf51 with
fm50.55260.005. For the index matching mixture we as-
sume L515.161.5 nm as well, and determine from the
phase diagram and density measurements that tetralin swells
the core radius by 26.063.0 nm or f51.263. The melting
transition in the mixture occurs atfm50.54460.008.

Both values for the melting transition closely correspond
to the theoretical value for polydisperse hard spheres of
fm50.555. Table I summarizes the diameters determined
from the various methods. The apparent diameters from the
phase diagram are consistent with our dynamic light scatter-
ing results, which give hydrodynamic diameters of 668616
nm in decalin and 716620 nm in the index matching mix-
ture. The hydrodynamic size for the swollen spheres in the
index matching mixture corresponds tof51.2860.11 with
n free
M /mPMMA;0 as compared withf51.2960.05 deduced

from the measurements of physical properties above. Thus
we conclude that the volume change upon mixing of tetralin
in PMMA is slightly negative, and that accounting for that
effect provides reasonable consistency among the measure-
ments of density, refractive index, and hydrodynamic and
thermodynamic radii. In addition, the volume fractions at
freezing and melting are within experimental error of those
expected for hard spheres, as asserted by previous investiga-
tors @3,5#.

III. X-RAY DENSITOMETRY

The deviation of the osmotic pressure

P~f!5nkTZ~f! ~10!

from the ideal, dilute limit is expressed inZ, the compress-
ibility factor. For the fluid state, Carnahan and Starling@23#
formulated the approximation

Zfluid~f!5
11f1f22f3

~12f!3
~11!

to capture the first seven virial coefficients and available re-
sults from computer simulations. For a face-centered-cubic
crystal, Hall @24# constructed a modified Pade´ approximant
from results from computer simulations in the form

Zsolid~f!5
1223b

b
12.557 69610.125 307 7b

10.176 239 3b221.053 308b312.818 621b4

22.921 934b511.118 413b6, ~12!

with b54~12f/fmax! andfmax50.74.

FIG. 2. Phase diagram for 640-nm-diameter PMMA-PHSA
spheres in decalin and the index matching mixture gives a layer
thickness of 15.1 nm. The solid line represents a linear regression of
the decalin data, and the dotted line a linear regression of the index
matching mixture data.
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To test how well the PMMA-PHSA system conforms to
these predictions, we scan an equilibrium sediment with an
x-ray microdensitometer, thereby achieving a more sensitive
measure of the osmotic pressure than with the compression
cell of Cairnset al. @7#. The volume fraction profile in an
equilibrium sediment reflects the balance between gravita-
tional forces and the osmotic pressure gradient. Integration
of this balance from the upper surface to any depthh deter-
mines the osmotic pressure as the total weight of the overly-
ing particles,

P~h!5E
h

`

gDrfc~z!dz, ~13!

whereDr is the density difference between the particle and
solvent. We can integrate the volume fraction profile numeri-
cally to obtain the osmotic pressure as a function of volume
fraction for comparison with the Carnahan-Starling and Hall
equations. However, the densitometry must resolve the rapid
change in volume fraction at the top of the sediment.

In an equilibrium sediment, the phase transition should
appear as a discontinuity in the volume fraction, as the pres-
sure is constant. On either side of this discontinuity the de-
rivative of Eq.~13! with respect to the volume fraction gives

df~z!

dz
52f~z!

kT

l 0
, ~14!

where the compressibility iskT5kTnp(dP/df)21, the
gravitational height isl 05kT/(Drgnp), andnp54pa3/3 is
the particle volume. For an ideal gas, the solution to Eq.~14!
produces the law of atmospheres with the gravitational
height appearing in the exponent and reflecting a balance
between Brownian motion, which tends to disperse, and
gravity, which draws the particles downward. For our
smaller particles, the gravitational height is on the order of
20mm at infinite dilution and increases with volume fraction
as

l ~f!

l 0
5
4pa3

3kT

dP

df
. ~15!

Thus at the phase transitionl (f);30l 0 . For the larger par-
ticles, l 0515 mm at infinite dilution.

Piazza, Bellini, and Degiorgio@25# measured the equation
of state of an equilibrium sediment of hard spheres by depo-
larized light scattering, but, at high volume fractions, found
the osmotic pressure to deviate from ideal crystal behavior,

possibly due to an electrostatic effect in their screened
charged colloids. Rutgerset al. @26# demonstrated that x-ray
densitometry with a two-dimensional area detector can accu-
rately measure the equation of state. This technique is non-
destructive, averages over most of the cross section, and
scans all heights with one exposure to eliminate any noise
due to instrument drift. Beer’s law, which relates the attenu-
ation of the x-ray intensityI /I 0 to the thicknessx and ab-
sorption coefficient 1/j of the sample as

I5I 0 exp~2x/j!, ~16!

permits an intensity profile to be converted to a volume frac-
tion profile. For all images, we first subtract the dark counts
D and then normalize with an image of a cell filled only with
the solvent according to

I N5
I2D

I s2D
5exp@2xfDj21#, ~17!

wherefDj215(j212j s
21), and the subscripts refers to

the solvent. This normalization, performed pixel by pixel,
should remove nonuniformities due to the incident beam,
imperfections in the scintillator crystal, and the slight vertical
tapering in the PMMA cuvettes.

Figure 3 shows the essential components of the x-ray
setup, which are placed on an optical table enclosed by a
leaded plexiglass hutch. A 35-keV electron beam at 40 mA
excites a molybdenum target to produce a characteristic
emission at 17.444 keV with a Bremsstrahlung tail. A zirco-
nium foil filters out most of the tail. The beam then passes
through a lead mask that defines the area of interest within
the sample. A scintillator crystal right behind the sample
converts the transmitted x-rays to visible light. A lens fo-
cuses the light onto a cooled charge coupling device chip
~TK1024a!, which captures it as a 102431024-pixel image.

FIG. 3. Essential components of the x-ray microdensitometry
setup.

TABLE I. Summary of the PMMA particle sizes in both pure decalin and the index matching mixture,
wherea is the radius andL the polymeric layer thickness, obtained by several methods. The first column
represents the unswollen TEM diameter. The particle sizes for PMMA in the index matching mixture deter-
mined from the total suspension density-refractive index, the total suspension density-phase diagram, dy-
namic light scattering~DLS!, and equation of state~EOS! all refer to the swollen diameters.

Particle size
technique

2a ~nm! 2(a1L) ~nm!

TEM density1nD

density plus
phase diagram DLS EOS

PMMA in decalin 640630 NA 67063 668616 68168
PMMA in mixture 640630 69769 72269 716620 72366
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To reduce the effect of smearing, the upper interface of the
sediment is aligned to the medial plane; thus the image only
captures 3 mm of the sediment. Smearing results because the
source is not a point but rather a 0.530.8-mm2 rectangle at a
finite distance, approximately 1 m from the samples. This
results in an 6.0-mm pixel spatial resolution in the sample,
which suffices to resolve the density profile from the dilute
gas phase, a millimeter above the phase transition, to volume
fractions approaching close packing, a few millimeters be-
low the phase transition. This will be evident in the equation
of state, which we show later.

Samples are stored in standard poly~methyl methacrylate!
spectrophotometry cells sealed with Duco cement, tapered
teflon caps, and telfon tape, and left to settle completely
within a styrofoam box that damps any rapid temperature
fluctuations in the room. An estimate based on the densities
of all constituent elements with linear interpolation of the
x-ray mass absorption coefficients given in International
Tables of Crystallography for 17.4 keV puts the absorption
coefficient for PMMA @-CH2C~CH3!~CO2CH3!-#n at 0.8826
cm21, for the decalin~C10H18! at 0.623 cm21, and for the
index matching mixture~C10H121C10H18! at 0.630 cm21.
These values indicate that the signal should be detectable
with sufficient contrast to obtain good intensity profiles. We
calibrate the absorption coefficients by imaging four samples
in each dispersion medium with unswollen core volume frac-
tions. Their images were normalized and averaged to obtain
the results shown in Fig. 4. The corresponding differences in
absorption coefficients between the particle and media are
Dj2150.32660.01 cm21 for the decalin and
Dj2150.25460.02 cm21 for the index matching mixture,
compared with the values from the International Tables of
0.260 cm21 for the decalin samples and 0.253 cm21 without
swelling for the index matching mixture. The measured and
calculated values do not agree exactly, because the x rays are
not perfectly monochromatic and the sample composition is
not known exactly.

At low concentrations, we expect the volume fraction to
decrease exponentially with height according to Eq.~13!, but
deficiencies in the imaging system produce instead a very

long tail at the top of the bed, as found by Rutgerset al.To
determine if the long tail is real@27#, we imaged a 0.4-mm
piece of aluminum across a cell filled with index matching
mixture. The aluminum has a similar contrast (I N50.924) to
our samples (0.92.I N.0.86). Perfect imaging would gen-
erate a sharp discontinuity, but instead the edge is smeared
across approximately four pixels. The line spread function is
the derivative of the edge. If the edge is horizontal, the row
sum of the line spread function gives the point spread func-
tion ~PSF!, the Fourier transform of which is the modulation
transfer function~MTF!. We divide the Fourier transform of
the data by the MTF and then invert the Fourier transform to
filter the data. A perfect imaging system would give the same
image contrast at all spatial frequencies. Our somewhat
Gaussian PSF causes decreasing contrast at higher spatial
frequencies, so filtering our images with the MFT would
amplify the suppressed high spatial frequencies as well as the
noise. Since our intensity profiles are gradual, the higher
spatial frequencies contain little information, so we reduce
the noise introduced by filtering by cutting off our MTF at
high spatial frequencies, thereby removing much of the long
tail while leaving the rest of the profile unchanged except for
some noise.

Equation of state

We prepared four samples atf0;0.20 to achieve a
1.0-cm sediment height: 518-nm PMMA in decalin and in
the index matching mixture and 640 nm in decalin and in the
index matching mixture. To estimate the time required for
the dispersions to settle completely, we refer to the sedimen-
tation velocities reported by Paulin and Ackerson@5# for
PMMA spheres as a function of volume fraction, as reduced
with the Stokes settling velocity of a single particle,

U05
2a2gDr

9m
, ~18!

where m is the medium viscosity. Dispersions initially at
concentrations below the freezing transition settle with three
distinct regions: freely settling, transition and sediment@28#.
For our particular system, where the suspension is relatively
monodisperse and sedimentation is slow, an ordered sedi-
ment accumulates at a rate,f1U(f1)/~fmax2f1! propor-
tional to the sedimentation velocity,U(f1), of the fluid just
above the sediment. Thus the time for sediment formation is
the final heightHf0/fmax divided by the rate of accumula-
tion, i.e.,

tset5
H

U~f1!

f0

f1 S 12
f1

fmax
D ~19!

@28#, where f1;0.505, fmax;0.6–0.7, and U(f1)
50.016U0 @5#. Therefore, the 640-nm particles should re-
quire about one month to settle, and the 518-nm particles
about two months, but the sediment may take considerably
longer to equilibrate fully.

After six months, all samples settled completely into an
opalescent, crystalline sediment with clear fluid above. Only
the 518-nm PMMA samples had a disordered layer visible to
the eye. Samples were carefully positioned with the medial
plane at the interface between fluid and crystal to reduce

FIG. 4. Calibration of normalized x-ray intensity with unswollen
fc , calculated from suspension density and phase diagram mea-
surements, results inDj2150.32660.01 and 0.25460.02 cm21 for
decalin and the index matching mixture, respectively.
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smearing and exposed for 180 s. The images were normal-
ized and averaged in the direction perpendicular to gravity to
obtain an intensity profile. The phase transition is apparent
with both the 518- and 640-nm PMMA particles.

We integrate the profiles to calculate the osmotic pressure
and choose the effective calibration constant or
Dj21* @a/(a1L)#3 to match the freezing transition at
f50.505. Comparing the effective calibration constant with
theDj21 extracted from the core calibration for the 640-nm
particles suggestsL520.964.0 nm for decalin and 15.363.0
nm for index matching mixture without swelling. The layer
thickness for the decalin sample is consistent with other pub-
lished data on PMMA particles, which range from 6 nm@5#

to 20 nm @3#, but a bit thicker than that obtained from our
phase diagram. The discrepancy may result from errors in
determining the core volume fraction for the calibration
samples and nonuniformities in the PMMA cuvettes. The
corresponding melting transition for the 518- and 640-nm
PMMA in both solvents occurs within 0.007 of the theoreti-
cal value for polydisperse hard spheres offm50.555. Table
II summarizes the calibration constants obtained by matching
the polydisperse hard sphere freezing transition and the cor-
responding melting transitions for all four samples as well as
the phase diagram results.

To obtain the osmotic pressure in accord with Eq.~13!,
we integrated the unfiltered data fromf;0.05, where the
smearing does not affect the profile, and added a constant to
account for the smearing by matching the pressure to the
Carnahan-Starling equation. Figure 5 shows the results with
the data for the smaller particles offset to illustrate the trends
clearly. For each particle size, the data superimpose for the
decalin and the index matching mixture. For all samples, the
pressure in the fluid phase matches the Carnahan-Starling
equation, but the pressure in the crystal exceeds the Hall
equation, diverging atfmax;0.725 instead of 0.74, perhaps
due to a direct effect of polydispersity.

The pressure in the solid phase extracted from similar
measurements for essentially hard sphere polystyrene in wa-
ter by Rutgerset al. @26# matches the Hall equation almost
exactly. Their sediments exhibit columnar iridescence, with a
length scale of roughly 1 mm, indicating much larger crys-
tallites than ours. Thus a plausible explanation for the higher
pressure in the crystalline phase is polycrystallinity or de-
fects and/or grain boundaries. Suppose, for example, that
crystallites of volumeV with radii R and internal volume
fraction fs have an interfacial region of thickness;a and

FIG. 5. Equation of state for 518-~offset byf20.1,P/nkT130! and 640-nm-diameter PMMA-PHSA particles in both decalin and the
index matching mixture. We set the freezing transition to that expected for slightly polydisperse hard spheres, i.e.,f f50.5051. The solid line
refers to the Carnahan-Starling and Hall expressions withfmax50.74. Inset: Magnification of the equation of state for 518-nm-diameter
PMMA-PHSA in the index matching mixture. The thicker solid line refers to the Hall expression withfmax50.725.

TABLE II. Summary of the effective x-ray-absorption coeffi-
cient differences between PMMA and the solvent, and their corre-
sponding melting transitions determined from x-ray densitometry as
well as from constructing the phase diagram. In both measurements,
we set the freezing transition for polydisperse hard spheres at
f f50.505.

Dj21* @a/(a1L)#3 ~cm21! fm

phase diagram
640 nm in decalin NA 0.5526 0.005
in mixture NA 0.54460.008

x-ray densitometry
518 nm in decalin 0.2746 0.002 0.5556 0.004
in mixture 0.22360.003 0.55260.005

x-ray densitometry
640 nm in decalin 0.2816 0.003 0.5626 0.007
in mixture 0.23260.003 0.55760.007
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interfacial areaA. Forces must balance across the disordered
interfacial region, causing the overall volume fraction to be
lower than thefs associated with the pressure, e.g.,

f5
Vfs1aAfd

V1aA
'

fs1
3a

R
fd

11
3a

R

, ~20!

wherefd , the volume fraction of the disordered region, is
set by mechanical equilibrium,P(fs)5P(fd). Figure 5 in-
dicates~0.742fmax!;0.015–0.02, which means thatR;12a
for the 640-nm-diameter PMMA spheres andR;17a for the
518-nm-diameter PMMA spheres would be required to ratio-
nalize the data withfd50.64. Though possible, this would
imply rather small crystallites. On the other hand, crystallites
might contact adjacent crystallites directly without particles
in between, i.e.,fd50. In this case,R;108a for the 640-
nm-diameter PMMA spheres andR;145a for the 518-nm-
diameter PMMA spheres would rationalize the data. These
crystallite sizes are reasonable since our samples have visible
but small grains~,1 mm!. We conclude that polycrystallity
may distinguish our pressures from those of Rutgerset al.or
a perfect fcc solid. The crystallite size most likely lies be-
tween the two cases analyzed above.

IV. ZIMM VISCOMETRY

Typical viscosity vs shear rate curves for hard sphere flu-
ids show Newtonian plateaus at high and low shear rates
separated by a shear thinning region. The high shear viscos-
ity h` derives from hydrodynamic forces with a structure
displaced far from equilibrium, and the low shear viscosity
h0.h` includes contributions from hydrodynamic forces as-
sociated with the equilibrium structure as well as from inter-
particle and Brownian forces for a structure slightly per-
turbed from equilibrium@28,29#. In general, if one plots the
inverse of the square root of the limiting steady shear vis-
cosities versus volume fraction, extrapolation identifies the
fmax at which the curves apparently diverge. For polymeri-
cally stabilized spheres, these values then characterize the
softness of the stabilizing layer and/or the nature of the mi-
crostructure at high and low shear@6#. Normally, the low
shear limit apparently diverges at a lower volume fraction
than the high shear limit, with the former generally corre-
sponding to random close packing and the latter suggesting
that spheres in hexagonal layers slide over each other in a
zigzag pattern.

In the dilute limit where pairwise interactions dominate,
Batchelor@30# calculated the low shear viscosity from a nu-
merical solution of the equation governing the perturbation
of the microstructure, obtaining far-field~2.5f2! and near-
field ~2.7f2! hydrodynamic contributions plus that from
Brownian motion~1.0f2!, such that

h0 /m5112.5f16.2f21O~f3!. ~21!

The interparticle forces do not contribute because hard
spheres repel each other only at contact where the hydrody-
namic mobility goes to zero. Experiments on hard spheres
follow @31#

h0 /m5112.5f1~462!f21~42610!f3,
~22!

h` /m5112.5f1~462!f21~2567!f3

in the dilute limit, and

h0 /m5~12f/fmax!
22 ~23!

at higher volume fractions, withfmax50.6360.02 for low
shear andfmax50.7060.02 for high shear. The critical stress
associated with shear thinning is of order

sc'
kT

a3
, ~24!

but shifts to lower values atf.0.5. Thus the Newtonian low
shear regime lies at stresses more than an order of magnitude
below the critical stress and the Newtonian high shear re-
gime ats@sc .

A Zimm viscometer covers a wide range of shear stresses
~1025–1 Pa!, and can detect shear rates as low as 1025 s21 to
obtain these limiting viscosities@32,33#. The viscometer pic-
tured in Fig. 6 consists of a temperature-controlled static
outer cylinder of radiusR0 filled with the fluid of interest,
and a freely floating rotor of radiusRr supported by its own
buoyancy and held in place by fluid surface tension. A con-
stant torque is applied by the interactions of an aluminum
block sitting at the bottom of the rotor with an applied rotat-
ing magnetic field. A HP3325A synthesizer–function gen-
erator and pulse motor drive the magnet at a constant but
adjustable angular velocity. Thus a constant shear stress is
applied to the fluid between the cylinders. The inner rotation
rate is determined by reflecting a laser beam from a circle of
alternating black and reflective radial stripes on top of the
aluminum block. As the rotor turns the reflection of the beam
from a point off the center of the circle blinks on and off.
The beam impinges on a photodiode, an analog to digital
card converts the signal, and this oscillating digitized signal
determines the frequency. Equating the magnetically induced
torque to the viscous torque on the rotor determines the
steady shear viscosityh in terms of the rotor and motor
rotation ratesv r andvm , respectively, as

FIG. 6. Diagram of the Zimm viscometer.
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h5C
vm2v r

v r
. ~25!

The calibration constantC depends on the strength of the
magnetic field and the conductivity and size of the aluminum
block. The average shear rate within the annular gap is

^ġ&5
4R0

2Rr
2 ln~R0 /Rr !

R0
22Rr

2 v r , ~26!

and the average stress follows as

^s&5h^ġ&5C
4R0

2Rr
2 ln~R0 /Rr !

R0
22Rr

2 ~vm2v r !. ~27!

At high shear rates, instability becomes a potential problem
beyond a Taylor number of@34#

Tc[F2Rr
2ġ transr/h

12~R0 /Rr !
2G2'3416 ~28!

for a static outer and rotating inner cylinder, causing the
stress to increase nonlinearly with shear rate. This sets an
upper bound on the shear rates available.

Two separate rotors, aluminum blocks, and magnets are
required for the high and low shear rate measurements. We
used a ceramic magnet with a strength of 2300–2400 G at
low shear rates, and a neodymium iron boron magnet with a
strength of 11 000–12 000 G for the high shear. Before cali-
brating, we determined the optimum vertical position of the
rotor associated with the minimum ratio of the magnet fre-
quency to the rotor frequency as a function of volume of
fluid. With too little fluid, friction from the bottom of the
temperature bath becomes important, while the aluminum
block floats out of the magnetic field with too much fluid.

Because of the different rotor radii, the optimum volume is
6.4 mL for the high shear rates and 10.5 mL for the low,
leaving a 7-mm gap between the bottom of the temperature
bath and the bottom of the rotor in both cases. The minimum
is rather broad, accommodating60.5 mL in the fluid vol-
ume. As the density of the dispersion increases with volume
fraction, the mass is adjusted by adding circular plastic
pieces that fit snugly into the rotor.

The instrument is calibrated with several Newtonian flu-
ids ~water, trans-decalin,cis-decalin, glycerol, and sucrose
solutions! with known viscosities ranging from 1 to 70 m Pa
s. Temperature affects the calibration constant slightly but,
for the relative viscosities of interest, the calibration constant
and, therefore, the temperature dependence cancel. For each
volume fraction of our sample, we measure the viscosity at
20 and 25 °C to check that the relative viscosities are invari-
ant. To prevent evaporation for the higher viscosity samples,
we seal the temperature bath with some clay and a watch
glass. We clean the temperature bath and rotor carefully with
ethanol before loading a new sample, and then remove any
bubbles that may stick to the wall.

Measurements with either the single phase fluid or at high
shear rates proved relatively straightforward, taking roughly
3–4 h to obtain sufficiently reproducible data. In the coex-
istence region, however, the high viscosities required a
couple of weeks at low shear rates, allowing crystallites to
settle and phase separate macroscopically. Consequently, the
gap between the bottom of the temperature bath and the bot-
tom of the rotor decreases and the additional friction signifi-
cantly reduces the shear rate. This time dependence plus the
inherent ambiguities in seeking a low shear viscosity for a
two-phase mixture rendered the measurement infeasible.

Limiting steady shear viscosities

Figure 7 shows a typical stress vs shear rate curve for our

FIG. 7. Typical stress vs shear rate curve for our dispersion. Inset: Magnification of the low shear regime.

54 6641PHASE TRANSITION, EQUATION OF STATE, AND . . .



dispersions. The low shear regime generally occurs for
^ġ&51023–1022 s21, and the high shear regime for^ġ&
51–50 s21. The high and low shear viscosities as a function
of f, determined from our phase diagram and swelling mea-
surements and shifted to include polydispersity effects, are
compared in Figs. 8~a! and 8~b!, respectively, with several
other sets of published data for hard spheres. Forf,0.5, the
measurements are highly reproducible, with an uncertainty
of 2.0% for the low shear and 3.0% for the high shear. The
error in weight fraction is60.003, which translates into
60.003 in core volume fraction. The effective volume frac-
tion, determined by matching the freezing transition, intro-

duces an additional uncertainty of up to60.007 for decalin
and60.010, for the index matching mixture.

Since the refractive index of the decalin differs from that
of the particle, van der Waals attractions might increase the
relative low shear viscosities. Estimation of the non retarded
limit of the Hamaker constant from

Aeff~0!5 3
4kTS «̄~0!2«~0!

«̄~0!1«~0! D
2

1
3hv

32pA2
~ n̄0

22n0
2!2

~ n̄0
21n0

2!3/2

~29!

requires Planck’s constanth; «~0!, the dielectric constant at

FIG. 8. ~a! High shear viscosities and~b! low shear viscosities for 640-nm-diameter PMMA-PHSA spheres, wheref is calculated from
suspension density and phase diagram measurements with the freezing transition set to that expected for slightly polydisperse hard spheres,
i.e.,f f50.505, compared with other published hard sphere systems. We rescaled Mewiset al.’s @6# volume fractions so thath`/m511.5 at
f50.50.
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zero frequency;vun , the frequency for the dominant relax-
ation in the ultraviolet wavelengths; andn0 , the refractive
index at the sodiumd line at 20 °C@28#. Quantities with a
bar overhead refer to the particle, and those without to the
solvent. Relaxations in the ultraviolet dominate the portion
of the dielectric spectra most important for dispersion inter-
actions. Assuming the«~0! andvun of PMMA to be close to
those for polystyrene yieldsAeff~0!'0.066kT, i.e., a very
weak attraction, which our measurements support since the
low shear viscosities in the mixture and decalin coincide.

Our relative high shear viscosities are consistent up to the
freezing transition with those for silica spheres sterically sta-
bilized with octadecyl chains in cyclohexane and polystyrene
lattices in water and other polar solvents, despite all the dif-
ferent means for converting weight concentrations to hard
sphere volume fractions@Fig. 8~a!#. Papir and Krieger’s
polystyrene in nonaqueous solvents@35# have standard de-
viations in diameter less than 5% and anO(f) coefficient of
2.67, i.e., close to the Einstein value of 2.5. Their values of
h`/m511.5 for crosslinked polystyrene in benzyl alcohol or
m-cresol atf50.50 compare well with our measurements on
PMMA in both decalin and index matching mixture,
h`/m511.5. However, both nonaqueous samples crystallize
for f.0.30, suggesting that the particles may be slightly
charged. Woods and Krieger@36# obtained similar results for
aqueous dispersions by accounting for a surfactant layer
thickness ofL52.25 nm in defining the volume fraction as

f5fc~113L/a!. ~30!

This collapses relative high shear viscosities for different
particle sizes onto a single curve withh`/m511 atf50.50.
de Kruif et al. @31# and van der Werff and de Kruif@37#
obtained equivalent high shear viscosities for silica spheres,
of several different diameters and polydispersity greater than

9%, stabilized sterically with octadecyl chains in cyclohex-
ane. They dried the particles to determine the mass concen-
tration, measured the intrinsic viscosity with a Ubbelohde
capillary viscometer, and thereby calculated the volume frac-
tion. Given the larger polydispersity and the uncertainty in
measuring intrinsic viscosity, these are the most questionable
volume fractions.

Mewis et al. @6# followed a similar procedure with 475-
and 1220-nm-diameter PMMA-PHSA in Exsol D200/240
and decalin but foundh`/m51761.0 atf50.50. The corre-
spondence of our high shear viscosities with the prior mea-
surements for hard sphere dispersions and the deviation of
Mewis et al. suggest that matching the freezing transition to
the hard sphere value may be the proper scaling. Hence, we
have ‘‘corrected’’ their volume fractions to bring the data for
h` into line. Beyond the freezing transition, our relative high
shear viscosities in the index matching mixture deviates
somewhat, e.g.,h`/m51762.0, relative to Woods and Krieg-
er’s value of 14.6 atf50.52, but more data points at higher
concentrations are needed to be definitive.

In the low shear limit the situation is rather different@Fig.
8~b!#, since our viscosities and those reported recently by
Segrèet al. @11# significantly exceed the values for octadecyl
silica spheres in cyclohexane and polystyrene latices in water
and other polar solvents. For example, atf50.50 Papir and
Krieger @35# and Woods and Kreiger@36# measured
h0/m524 for polystyrene in benzyl alcohol orm-cresol and
h0/m522 for polymer latices in aqueous dispersions, respec-
tively, while van der Werff and de Kruif@37# found values of
13, 21, and 30 for octadecyl silica of three different particle
sizes in cyclohexane. Shikata and Pearson@38# found
h0/m525.4 atf50.50 for bare silica particles. Our measure-
ments, as well as those of Segre` et al., on PMMA-PHSA in
both decalin and the index matching mixture give higher

FIG. 9. Low shear viscosities for 640-nm-diameter PMMA-PHSA spheres, wheref is calculated from suspension density and phase
diagram measurements with the freezing transition set to that expected for slightly polydisperse hard spheres, i.e.,f f50.505, compared with
other published PMMA-PHSA data. We rescaled Mewiset al.’s @6# volume fraction so thath`/m511.5 atf50.50, and Segre` et al.’s @11#
volume fraction to account for 5% polydispersity.
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values, abouth0/m54563 for our particles andh0/m550 for
Segrèet al.’s. The data of Mewiset al.with the ‘‘corrected’’
volume fractions producesh0/m555610 at f50.50 and
h0/m53065 atf50.477, close to Segre` et al.’s data and our
own. Finally, applying the 5% polydispersity correction to
Segrèet al.’s volume fractions shifts their low shear viscosi-
ties into reasonably close accord with those from Mewis
et al.and this paper~Fig. 9!. Thus we are left with two bands
of data, the higher one for the PMMA-PHSA dispersions,
and the lower for the polystyrene and silica systems. Fitting
all the PMMA-PHSA low shear viscosities for 0.30,f
,0.50 to the Krieger-Dougherty equation

h0

m
5S 12

f

fmax
D 22

~31!

givesfmax50.57760.005.
The different low shear viscosities for the PMMA-PHSA

dispersions relative to the polystyrene and octadecyl silicas
could reflect fundamental differences. However, complica-
tions due to the slight permeability or softness of the PHSA
layers, polydispersity in the octadecyl silicas, and molecular
level details with the polymer latices may prove difficult to
sort out. Since our equation of state measurements indicate
that PMMA-PHSA dispersions behave as hard spheres up to
f50.60, we believe that the PMMA-PHSA data may repre-
sent the hard sphere curve for the low shear viscosities.

V. CONCLUSIONS

We convert our core volume fractions to hard sphere vol-
ume fractions by matching the freezing transition to that ex-
pected for slightly polydisperse hard spheres,f f50.505,
thereby obtaining~i! a polymer layer thickness in reasonable
accord with other published data on the PMMA-PHSA par-
ticles; ~ii ! a melting transition within experimental uncer-
tainty of that expected for polydisperse hard spheres;~iii ! an
osmotic pressure in the fluid state that matches the Carnahan-
Starling equation and provides the most direct evidence to
date that PMMA dispersions withf,0.60 can be approxi-
mated as hard spheres;~iv! high shear viscosities consistent
with those from polystyrene and octadecyl silica; and~v! low
shear viscosities consistent with other data on the PMMA-
PHSA system but significantly higher than for the polysty-
rene, octadecyl silica, and bare silica. Several means of ex-
tracting the hard sphere volume fraction are reasonably
consistent, despite significant swelling of the PMMA by te-
tralin. The only substantial anomaly is the large positive de-
viation of the osmotic pressure in the crystalline solid rela-
tive to that from simulations for the fcc hard sphere crystal.
Because of our equation of state measurements, we believe
that the PMMA-PHSA data, rather than the earlier data, may
represent the hard sphere curve for low shear viscosities.
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